Languages can be difficult to learn, though infants and children
seem to do so easily. This project uncovers how language learning
may occur in adults and what strategy aids improvement in identifying
speech sounds, a crucial part of learning a language.
In this dataset, participants learned to distinguish two auditory
categories. These categories were sounds that were created by combining
two frequencies together (similar to a two-note-chord).
[[1]]
[1] TRUE
[[2]]
[1] TRUE
head(learningdata)
Dataset includes:
- Participant.Private.ID: 162 participant IDs
- Trial.Number: 384 trials per participant
- Block: 12 blocks per participant (32 trials per block)
- t1bk: tone 1 in bark (an alternative unit to Hz; better reflective
of human hearing)
- t2bk: tone 2 in bark (an alternative unit to Hz; better reflective
of human hearing)
- Match: whether listeners heard Matching categories or Mismatching
categories
- Response: the category label assigned to each stimulus (not listed);
f or j
- Correct: whether response was Correct
First, I want to know whether participants did learn the categories.
Thus, I compared accuracy from the first block to the last block.
# get accuracy averaged across block for each participant
subaccuracy <- aggregate(Correct ~ Block + Participant.Private.ID, data = learningdata, FUN = mean, na.rm=TRUE)
# we only want to look at the first and last block
subaccuracy <- subaccuracy %>% mutate(Block = replace(Block, Block == "1", "start"),
Block = replace(Block, Block == "12", "end"))
# plot accuracy for first and last block
subaccuracy %>%
filter(Block %in% c("start", "end")) %>%
ggplot() +
aes(x = Block, y = Correct) +
geom_boxplot(fill = "#112446") +
theme_minimal()
![]()
t.test(subaccuracy$Correct[subaccuracy$Block == "start"], subaccuracy$Correct[subaccuracy$Block == "end"])
Welch Two Sample t-test
data: subaccuracy$Correct[subaccuracy$Block == "start"] and subaccuracy$Correct[subaccuracy$Block == "end"]
t = -4.5939, df = 321.61, p-value = 6.253e-06
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.08706174 -0.03485184
sample estimates:
mean of x mean of y
0.6529707 0.7139275
Great! On average, everyone improved from the first block to the
last block. But did everyone improve? Let’s calculate a difference score
between the first and last block to find out.
diffdata <- spread(subaccuracy,Block,Correct)
diffdata$diffscore <- diffdata$end - diffdata$start # for each subject, subtract block 12 from block 1
hist(diffdata$diffscore)
![]()
Not everyone improved! Some improved between the first and last
block (difference score > 0) while others did not (difference score
<= 0).
How many participants improved?
improvement <- diffdata$Participant.Private.ID[which(diffdata$diffscore>0)]
noimprovement <- diffdata$Participant.Private.ID[which(diffdata$diffscore<=0)]
print(paste(length(improvement), ' participants improved while ',paste(length(noimprovement)), ' participants did not improve.' ))
[1] "97 participants improved while 65 participants did not improve."
Why did some participants improve while others didn’t?
Participants who improved must use pitch differences to categorize
sounds. Ideally, they’d recognize and match the pitch to its
category.
However, a simpler approach might be to use similarity judgments:
categorizing based on whether the current sound is similar or dissimilar
to the previous one.
I measured similarity by comparing sound frequencies between trials
and note if participants maintained or switched category labels. This
information can be used to predict whether participants improved or not
in a logistic regression.
learningdata <- learningdata %>%
group_by(Participant.Private.ID) %>% # for each subject
mutate(dist = c(NA, sqrt(diff(t1bk)^2 + diff(t2bk)^2)), # calculate the difference between the previous and current sound, leaving the first one out
respchange = as.integer(Response != lag(Response, default = first(Response))))
learningdata <- learningdata[-which(learningdata$Trial.Number == 1),] # since the first trial doesn't have a previous sound, let's remove that from analysis
learningdata$dist_cent <- learningdata$dist - mean(learningdata$dist) # standardize distance between sounds
learningdata$CC_respchange <- learningdata$respchange - .5 # codify whether learners changed response
learningdata$dist_chng <- learningdata$dist_cent*learningdata$CC_respchange # codify whether learners changed response as a function of hearing differences between sounds
sublvldata <- aggregate(cbind(dist_cent, CC_respchange, dist_chng) ~ Participant.Private.ID, data = learningdata[which(learningdata$Block == 12),], FUN = mean, na.rm = TRUE)
sublvldata$learned <- "improved"
sublvldata$learned[sublvldata$Participant.Private.ID %in% noimprovement] <- "no improvement"
sublvldata$bin_learned <- 1
sublvldata$bin_learned[sublvldata$Participant.Private.ID %in% noimprovement] <- 0
improvemodel <- glm(bin_learned ~ dist_cent+CC_respchange+dist_chng, data = sublvldata)
summary(improvemodel)
Call:
glm(formula = bin_learned ~ dist_cent + CC_respchange + dist_chng,
data = sublvldata)
Deviance Residuals:
Min 1Q Median 3Q Max
-0.8141 -0.5025 0.1811 0.3785 0.6908
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.33766 0.07582 4.453 1.59e-05 ***
dist_cent 0.71204 0.37530 1.897 0.059617 .
CC_respchange -0.37871 0.35980 -1.053 0.294157
dist_chng 1.53934 0.45211 3.405 0.000839 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for gaussian family taken to be 0.2203873)
Null deviance: 38.920 on 161 degrees of freedom
Residual deviance: 34.821 on 158 degrees of freedom
AIC: 220.68
Number of Fisher Scoring iterations: 2
ggplot(sublvldata) +
aes(x = learned, y = dist_chng) +
geom_boxplot(fill = "#112446") +
theme_minimal()
![]()
People improved when they focused on how similar or different the
sounds were. When sounds were different, learners changed their
response; when sounds were similar, learners kept the same response.
Those who improved used this strategy more than those who didn’t.
Though this may seem obvious, this gives insight into strategies of
language learning. Learning a new language depends on hearing
differences between sounds. If we can help people hear these differences
more clearly and consistently, they can learn languages faster.
What if listeners were given prior exposure to the language? Would
that be useful in improving language learning? To test this, I assess
whether listeners hearing sounds that match the categories will improve
learning. Half of participants heard matching categories while the other
half heard similar sounds, but mismatching categories.
matchinfo <- unique(learningdata[,c("Participant.Private.ID","Match")])
sublvldata <- merge(sublvldata,matchinfo)
ggplot(sublvldata) +
aes(x = learned) +
geom_bar(fill = "#112446") +
theme_minimal() +
facet_wrap(vars(Match))
![]()
print(paste('Within those who heard matching categories,' , round(length(which(sublvldata$Match == "Match" & sublvldata$bin_learned == 1))/length(which(sublvldata$Match == "Match"))*100,2), '% of participants improved while ', round(length(which(sublvldata$Match == "Mismatch" & sublvldata$bin_learned == 1))/length(which(sublvldata$Match == "Mismatch"))*100,2),'% of participants who heard mismatching categories improved.'))
[1] "Within those who heard matching categories, 62.96 % of participants improved while 56.79 % of participants who heard mismatching categories improved."
sublvldata$CC_Match <- (sublvldata$Match == "Match") - .5
improvemodel2 <- glm(bin_learned ~ dist_cent+CC_respchange+dist_chng+CC_Match, data = sublvldata)
summary(improvemodel2)
Call:
glm(formula = bin_learned ~ dist_cent + CC_respchange + dist_chng +
CC_Match, data = sublvldata)
Deviance Residuals:
Min 1Q Median 3Q Max
-0.8408 -0.5031 0.1803 0.3786 0.7279
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.33316 0.07602 4.383 2.14e-05 ***
dist_cent 0.67943 0.37718 1.801 0.073565 .
CC_respchange -0.33800 0.36273 -0.932 0.352861
dist_chng 1.58372 0.45494 3.481 0.000647 ***
CC_Match 0.06850 0.07490 0.915 0.361803
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for gaussian family taken to be 0.2206156)
Null deviance: 38.920 on 161 degrees of freedom
Residual deviance: 34.637 on 157 degrees of freedom
AIC: 221.82
Number of Fisher Scoring iterations: 2
These differences between participants were not statistically
significant; hearing matching or mismatching categories does not predict
whether participants improved in the task. The majority of learning
still came from actively learning labels for sound categories.
Though familiarizing with the sound categories may not be a viable
strategy to improve language learning, this is encouraging to know that
it may not matter what listeners hear before learning. Learners can
still learn a language even if they heard the wrong categories to start.
Learners can still learn a language regardless of what languages they
already know.
LS0tDQp0aXRsZTogIlVuY292ZXJpbmcgU3RyYXRlZ2llcyBpbiBNdXNpYyBhbmQgTGFuZ3VhZ2UgTGVhcm5pbmciDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQojIyMjIExhbmd1YWdlcyBjYW4gYmUgZGlmZmljdWx0IHRvIGxlYXJuLCB0aG91Z2ggaW5mYW50cyBhbmQgY2hpbGRyZW4gc2VlbSB0byBkbyBzbyBlYXNpbHkgKENJVEUpLiBUaGlzIHByb2plY3QgdW5jb3ZlcnMgaG93IGxhbmd1YWdlIGxlYXJuaW5nIG1heSBvY2N1ciBpbiBhZHVsdHMgYW5kIHdoYXQgc3RyYXRlZ3kgYWlkcyBpbXByb3ZlbWVudCBpbiBpZGVudGlmeWluZyBzcGVlY2ggc291bmRzLCBhIGNydWNpYWwgcGFydCBvZiBsZWFybmluZyBhIGxhbmd1YWdlLiANCg0KIyMjIyBJbiB0aGlzIGRhdGFzZXQsIHBhcnRpY2lwYW50cyBsZWFybmVkIHRvIGRpc3Rpbmd1aXNoIHR3byBhdWRpdG9yeSBjYXRlZ29yaWVzLiBUaGVzZSBjYXRlZ29yaWVzIHdlcmUgc291bmRzIHRoYXQgd2VyZSBjcmVhdGVkIGJ5IGNvbWJpbmluZyB0d28gZnJlcXVlbmNpZXMgdG9nZXRoZXIgKHNpbWlsYXIgdG8gYSB0d28tbm90ZS1jaG9yZCkuIA0KDQpgYGB7ciwgZWNobyA9IGZhbHNlfQ0Kcm0obGlzdD1scygpKQ0KDQpteV9wYWNrYWdlcyA8LSBjKCJ0aWR5dmVyc2UiLCJsbWU0IikgIyBTcGVjaWZ5IHlvdXIgcGFja2FnZXMNCmxhcHBseShteV9wYWNrYWdlcywgcmVxdWlyZSwgY2hhcmFjdGVyLm9ubHkgPSBUUlVFKSANCg0KbGVhcm5pbmdkYXRhIDwtIHJlYWQuY3N2KCdDOlxcVXNlcnNcXHNhbWFuXFxEZXNrdG9wXFxsZWFybmluZ2NhdGVnb3JpZXMuY3N2JykNCmBgYA0KDQpgYGAge3IgbG9hZCBkYXRhfSANCmhlYWQobGVhcm5pbmdkYXRhKQ0KYGBgDQoNCiMjIyMgRGF0YXNldCBpbmNsdWRlczogDQoNCiogUGFydGljaXBhbnQuUHJpdmF0ZS5JRDogMTYyIHBhcnRpY2lwYW50IElEcw0KKiBUcmlhbC5OdW1iZXI6IDM4NCB0cmlhbHMgcGVyIHBhcnRpY2lwYW50DQoqIEJsb2NrOiAxMiBibG9ja3MgcGVyIHBhcnRpY2lwYW50ICgzMiB0cmlhbHMgcGVyIGJsb2NrKQ0KKiB0MWJrOiB0b25lIDEgaW4gYmFyayAoYW4gYWx0ZXJuYXRpdmUgdW5pdCB0byBIejsgYmV0dGVyIHJlZmxlY3RpdmUgb2YgaHVtYW4gaGVhcmluZykNCiogdDJiazogdG9uZSAyIGluIGJhcmsgKGFuIGFsdGVybmF0aXZlIHVuaXQgdG8gSHo7IGJldHRlciByZWZsZWN0aXZlIG9mIGh1bWFuIGhlYXJpbmcpDQoqIE1hdGNoOiB3aGV0aGVyIGxpc3RlbmVycyBoZWFyZCBNYXRjaGluZyBjYXRlZ29yaWVzIG9yIE1pc21hdGNoaW5nIGNhdGVnb3JpZXMNCiogUmVzcG9uc2U6IHRoZSBjYXRlZ29yeSBsYWJlbCBhc3NpZ25lZCB0byBlYWNoIHN0aW11bHVzIChub3QgbGlzdGVkKTsgZiBvciBqDQoqIENvcnJlY3Q6IHdoZXRoZXIgcmVzcG9uc2Ugd2FzIENvcnJlY3QNCg0KIyMjIyBGaXJzdCwgSSB3YW50IHRvIGtub3cgd2hldGhlciBwYXJ0aWNpcGFudHMgZGlkIGxlYXJuIHRoZSBjYXRlZ29yaWVzLiBUaHVzLCBJIGNvbXBhcmVkIGFjY3VyYWN5IGZyb20gdGhlIGZpcnN0IGJsb2NrIHRvIHRoZSBsYXN0IGJsb2NrLg0KDQpgYGAge3IgRGlkIHBhcnRpY2lwYW50cyBsZWFybj99DQojIGdldCBhY2N1cmFjeSBhdmVyYWdlZCBhY3Jvc3MgYmxvY2sgZm9yIGVhY2ggcGFydGljaXBhbnQNCnN1YmFjY3VyYWN5IDwtIGFnZ3JlZ2F0ZShDb3JyZWN0IH4gQmxvY2sgKyBQYXJ0aWNpcGFudC5Qcml2YXRlLklELCBkYXRhID0gbGVhcm5pbmdkYXRhLCBGVU4gPSBtZWFuLCBuYS5ybT1UUlVFKQ0KIyB3ZSBvbmx5IHdhbnQgdG8gbG9vayBhdCB0aGUgZmlyc3QgYW5kIGxhc3QgYmxvY2sNCnN1YmFjY3VyYWN5IDwtIHN1YmFjY3VyYWN5ICU+JSBtdXRhdGUoQmxvY2sgPSByZXBsYWNlKEJsb2NrLCBCbG9jayA9PSAiMSIsICJzdGFydCIpLCANCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIEJsb2NrID0gcmVwbGFjZShCbG9jaywgQmxvY2sgPT0gIjEyIiwgImVuZCIpKQ0KIyBwbG90IGFjY3VyYWN5IGZvciBmaXJzdCBhbmQgbGFzdCBibG9jaw0Kc3ViYWNjdXJhY3kgJT4lDQogZmlsdGVyKEJsb2NrICVpbiUgYygic3RhcnQiLCAiZW5kIikpICU+JQ0KIGdncGxvdCgpICsNCiBhZXMoeCA9IEJsb2NrLCB5ID0gQ29ycmVjdCkgKw0KIGdlb21fYm94cGxvdChmaWxsID0gIiMxMTI0NDYiKSArDQogdGhlbWVfbWluaW1hbCgpDQpgYGANCmBgYCB7ciB0IHRlc3QgdG8gY29tcGFyZSBtZWFucyBhY3Jvc3Mgc3ViamVjdHN9DQp0LnRlc3Qoc3ViYWNjdXJhY3kkQ29ycmVjdFtzdWJhY2N1cmFjeSRCbG9jayA9PSAic3RhcnQiXSwgc3ViYWNjdXJhY3kkQ29ycmVjdFtzdWJhY2N1cmFjeSRCbG9jayA9PSAiZW5kIl0pDQpgYGANCiMjIyMgR3JlYXQhIE9uIGF2ZXJhZ2UsIGV2ZXJ5b25lIGltcHJvdmVkIGZyb20gdGhlIGZpcnN0IGJsb2NrIHRvIHRoZSBsYXN0IGJsb2NrLiBCdXQgZGlkIGV2ZXJ5b25lIGltcHJvdmU/IExldCdzIGNhbGN1bGF0ZSBhIGRpZmZlcmVuY2Ugc2NvcmUgYmV0d2VlbiB0aGUgZmlyc3QgYW5kIGxhc3QgYmxvY2sgdG8gZmluZCBvdXQuIA0KDQpgYGAge3IgRGlkIGV2ZXJ5b25lIGxlYXJuP30NCmRpZmZkYXRhIDwtIHNwcmVhZChzdWJhY2N1cmFjeSxCbG9jayxDb3JyZWN0KQ0KZGlmZmRhdGEkZGlmZnNjb3JlIDwtIGRpZmZkYXRhJGVuZCAtIGRpZmZkYXRhJHN0YXJ0ICMgZm9yIGVhY2ggc3ViamVjdCwgc3VidHJhY3QgYmxvY2sgMTIgZnJvbSBibG9jayAxDQoNCmhpc3QoZGlmZmRhdGEkZGlmZnNjb3JlKQ0KYGBgDQoNCiMjIyMgTm90IGV2ZXJ5b25lIGltcHJvdmVkISBTb21lIGltcHJvdmVkIGJldHdlZW4gdGhlIGZpcnN0IGFuZCBsYXN0IGJsb2NrIChkaWZmZXJlbmNlIHNjb3JlID4gMCkgd2hpbGUgb3RoZXJzIGRpZCBub3QgKGRpZmZlcmVuY2Ugc2NvcmUgPD0gMCkuIA0KDQojIyMjIEhvdyBtYW55IHBhcnRpY2lwYW50cyBpbXByb3ZlZD8gDQoNCmBgYCB7ciBIb3cgbWFueSBwYXJ0aWNpcGFudHMgaW1wcm92ZWQ/fQ0KaW1wcm92ZW1lbnQgPC0gZGlmZmRhdGEkUGFydGljaXBhbnQuUHJpdmF0ZS5JRFt3aGljaChkaWZmZGF0YSRkaWZmc2NvcmU+MCldDQpub2ltcHJvdmVtZW50IDwtIGRpZmZkYXRhJFBhcnRpY2lwYW50LlByaXZhdGUuSURbd2hpY2goZGlmZmRhdGEkZGlmZnNjb3JlPD0wKV0NCg0KcHJpbnQocGFzdGUobGVuZ3RoKGltcHJvdmVtZW50KSwgJyBwYXJ0aWNpcGFudHMgaW1wcm92ZWQgd2hpbGUgJyxwYXN0ZShsZW5ndGgobm9pbXByb3ZlbWVudCkpLCAnIHBhcnRpY2lwYW50cyBkaWQgbm90IGltcHJvdmUuJyApKQ0KYGBgDQoNCiMjIyMgV2h5IGRpZCBzb21lIHBhcnRpY2lwYW50cyBpbXByb3ZlIHdoaWxlIG90aGVycyBkaWRuJ3Q/IA0KDQojIyMjIFBhcnRpY2lwYW50cyB3aG8gaW1wcm92ZWQgbXVzdCB1c2UgcGl0Y2ggZGlmZmVyZW5jZXMgdG8gY2F0ZWdvcml6ZSBzb3VuZHMuIElkZWFsbHksIHRoZXknZCByZWNvZ25pemUgYW5kIG1hdGNoIHRoZSBwaXRjaCB0byBpdHMgY2F0ZWdvcnkuIA0KDQojIyMjIEhvd2V2ZXIsIGEgc2ltcGxlciBhcHByb2FjaCBtaWdodCBiZSB0byB1c2Ugc2ltaWxhcml0eSBqdWRnbWVudHM6IGNhdGVnb3JpemluZyBiYXNlZCBvbiB3aGV0aGVyIHRoZSBjdXJyZW50IHNvdW5kIGlzIHNpbWlsYXIgb3IgZGlzc2ltaWxhciB0byB0aGUgcHJldmlvdXMgb25lLg0KDQojIyMjIEkgbWVhc3VyZWQgc2ltaWxhcml0eSBieSBjb21wYXJpbmcgc291bmQgZnJlcXVlbmNpZXMgYmV0d2VlbiB0cmlhbHMgYW5kIG5vdGUgaWYgcGFydGljaXBhbnRzIG1haW50YWluZWQgb3Igc3dpdGNoZWQgY2F0ZWdvcnkgbGFiZWxzLiBUaGlzIGluZm9ybWF0aW9uIGNhbiBiZSB1c2VkIHRvIHByZWRpY3Qgd2hldGhlciBwYXJ0aWNpcGFudHMgaW1wcm92ZWQgb3Igbm90IGluIGEgbG9naXN0aWMgcmVncmVzc2lvbi4NCmBgYCB7ciBkaWQgcGFydGljaXBhbnRzIHVzZSBzaW1pbGFyaXR5IGp1ZGdtZW50cz8gfQ0KbGVhcm5pbmdkYXRhIDwtIGxlYXJuaW5nZGF0YSAlPiUgDQogIGdyb3VwX2J5KFBhcnRpY2lwYW50LlByaXZhdGUuSUQpICU+JSAjIGZvciBlYWNoIHN1YmplY3QNCiAgbXV0YXRlKGRpc3QgPSBjKE5BLCBzcXJ0KGRpZmYodDFiayleMiArIGRpZmYodDJiayleMikpLCAjIGNhbGN1bGF0ZSB0aGUgZGlmZmVyZW5jZSBiZXR3ZWVuIHRoZSBwcmV2aW91cyBhbmQgY3VycmVudCBzb3VuZCwgbGVhdmluZyB0aGUgZmlyc3Qgb25lIG91dA0KICAgICAgICAgcmVzcGNoYW5nZSA9IGFzLmludGVnZXIoUmVzcG9uc2UgIT0gbGFnKFJlc3BvbnNlLCBkZWZhdWx0ID0gZmlyc3QoUmVzcG9uc2UpKSkpDQpsZWFybmluZ2RhdGEgPC0gbGVhcm5pbmdkYXRhWy13aGljaChsZWFybmluZ2RhdGEkVHJpYWwuTnVtYmVyID09IDEpLF0gIyBzaW5jZSB0aGUgZmlyc3QgdHJpYWwgZG9lc24ndCBoYXZlIGEgcHJldmlvdXMgc291bmQsIGxldCdzIHJlbW92ZSB0aGF0IGZyb20gYW5hbHlzaXMgDQoNCmxlYXJuaW5nZGF0YSRkaXN0X2NlbnQgPC0gbGVhcm5pbmdkYXRhJGRpc3QgLSBtZWFuKGxlYXJuaW5nZGF0YSRkaXN0KSAjIHN0YW5kYXJkaXplIGRpc3RhbmNlIGJldHdlZW4gc291bmRzDQpsZWFybmluZ2RhdGEkQ0NfcmVzcGNoYW5nZSA8LSBsZWFybmluZ2RhdGEkcmVzcGNoYW5nZSAtIC41ICMgY29kaWZ5IHdoZXRoZXIgbGVhcm5lcnMgY2hhbmdlZCByZXNwb25zZQ0KbGVhcm5pbmdkYXRhJGRpc3RfY2huZyA8LSBsZWFybmluZ2RhdGEkZGlzdF9jZW50KmxlYXJuaW5nZGF0YSRDQ19yZXNwY2hhbmdlICMgY29kaWZ5IHdoZXRoZXIgbGVhcm5lcnMgY2hhbmdlZCByZXNwb25zZSBhcyBhIGZ1bmN0aW9uIG9mIGhlYXJpbmcgZGlmZmVyZW5jZXMgYmV0d2VlbiBzb3VuZHMgDQoNCnN1Ymx2bGRhdGEgPC0gYWdncmVnYXRlKGNiaW5kKGRpc3RfY2VudCwgQ0NfcmVzcGNoYW5nZSwgZGlzdF9jaG5nKSB+IFBhcnRpY2lwYW50LlByaXZhdGUuSUQsIGRhdGEgPSBsZWFybmluZ2RhdGFbd2hpY2gobGVhcm5pbmdkYXRhJEJsb2NrID09IDEyKSxdLCBGVU4gPSBtZWFuLCBuYS5ybSA9IFRSVUUpDQoNCnN1Ymx2bGRhdGEkbGVhcm5lZCA8LSAiaW1wcm92ZWQiDQpzdWJsdmxkYXRhJGxlYXJuZWRbc3VibHZsZGF0YSRQYXJ0aWNpcGFudC5Qcml2YXRlLklEICVpbiUgbm9pbXByb3ZlbWVudF0gPC0gIm5vIGltcHJvdmVtZW50Ig0Kc3VibHZsZGF0YSRiaW5fbGVhcm5lZCA8LSAxDQpzdWJsdmxkYXRhJGJpbl9sZWFybmVkW3N1Ymx2bGRhdGEkUGFydGljaXBhbnQuUHJpdmF0ZS5JRCAlaW4lIG5vaW1wcm92ZW1lbnRdIDwtIDANCg0KaW1wcm92ZW1vZGVsIDwtIGdsbShiaW5fbGVhcm5lZCB+IGRpc3RfY2VudCtDQ19yZXNwY2hhbmdlK2Rpc3RfY2huZywgZGF0YSA9IHN1Ymx2bGRhdGEpDQpzdW1tYXJ5KGltcHJvdmVtb2RlbCkNCg0KYGBgDQoNCmBgYCB7ciBwbG90IGltcHJvdmVkIHZzIG5vIGltcHJvdmVtZW50IH0NCg0KZ2dwbG90KHN1Ymx2bGRhdGEpICsNCiBhZXMoeCA9IGxlYXJuZWQsIHkgPSBkaXN0X2NobmcpICsNCiBnZW9tX2JveHBsb3QoZmlsbCA9ICIjMTEyNDQ2IikgKw0KIHRoZW1lX21pbmltYWwoKQ0KDQpgYGANCiMjIyMgUGVvcGxlIGltcHJvdmVkIHdoZW4gdGhleSBmb2N1c2VkIG9uIGhvdyBzaW1pbGFyIG9yIGRpZmZlcmVudCB0aGUgc291bmRzIHdlcmUuIFdoZW4gc291bmRzIHdlcmUgZGlmZmVyZW50LCBsZWFybmVycyBjaGFuZ2VkIHRoZWlyIHJlc3BvbnNlOyB3aGVuIHNvdW5kcyB3ZXJlIHNpbWlsYXIsIGxlYXJuZXJzIGtlcHQgdGhlIHNhbWUgcmVzcG9uc2UuIFRob3NlIHdobyBpbXByb3ZlZCB1c2VkIHRoaXMgc3RyYXRlZ3kgbW9yZSB0aGFuIHRob3NlIHdobyBkaWRuJ3QuDQoNCiMjIyMgVGhvdWdoIHRoaXMgbWF5IHNlZW0gb2J2aW91cywgdGhpcyBnaXZlcyBpbnNpZ2h0IGludG8gc3RyYXRlZ2llcyBvZiBsYW5ndWFnZSBsZWFybmluZy4gTGVhcm5pbmcgYSBuZXcgbGFuZ3VhZ2UgZGVwZW5kcyBvbiBoZWFyaW5nIGRpZmZlcmVuY2VzIGJldHdlZW4gc291bmRzLiBJZiB3ZSBjYW4gaGVscCBwZW9wbGUgaGVhciB0aGVzZSBkaWZmZXJlbmNlcyBtb3JlIGNsZWFybHkgYW5kIGNvbnNpc3RlbnRseSwgdGhleSBjYW4gbGVhcm4gbGFuZ3VhZ2VzIGZhc3Rlci4NCg0KIyMjIyBXaGF0IGlmIGxpc3RlbmVycyB3ZXJlIGdpdmVuIHByaW9yIGV4cG9zdXJlIHRvIHRoZSBsYW5ndWFnZT8gV291bGQgdGhhdCBiZSB1c2VmdWwgaW4gaW1wcm92aW5nIGxhbmd1YWdlIGxlYXJuaW5nPyBUbyB0ZXN0IHRoaXMsIEkgYXNzZXNzIHdoZXRoZXIgbGlzdGVuZXJzIGhlYXJpbmcgc291bmRzIHRoYXQgbWF0Y2ggdGhlIGNhdGVnb3JpZXMgd2lsbCBpbXByb3ZlIGxlYXJuaW5nLiBIYWxmIG9mIHBhcnRpY2lwYW50cyBoZWFyZCBtYXRjaGluZyBjYXRlZ29yaWVzIHdoaWxlIHRoZSBvdGhlciBoYWxmIGhlYXJkIHNpbWlsYXIgc291bmRzLCBidXQgbWlzbWF0Y2hpbmcgY2F0ZWdvcmllcy4NCg0KYGBge3IgbWF0Y2hpbmcgY2F0ZWdvcmllc30NCg0KbWF0Y2hpbmZvIDwtIHVuaXF1ZShsZWFybmluZ2RhdGFbLGMoIlBhcnRpY2lwYW50LlByaXZhdGUuSUQiLCJNYXRjaCIpXSkNCnN1Ymx2bGRhdGEgPC0gbWVyZ2Uoc3VibHZsZGF0YSxtYXRjaGluZm8pDQoNCmdncGxvdChzdWJsdmxkYXRhKSArDQogYWVzKHggPSBsZWFybmVkKSArDQogZ2VvbV9iYXIoZmlsbCA9ICIjMTEyNDQ2IikgKw0KIHRoZW1lX21pbmltYWwoKSArDQogZmFjZXRfd3JhcCh2YXJzKE1hdGNoKSkNCmBgYA0KYGBge3IgfQ0KcHJpbnQocGFzdGUoJ1dpdGhpbiB0aG9zZSB3aG8gaGVhcmQgbWF0Y2hpbmcgY2F0ZWdvcmllcywnICwgcm91bmQobGVuZ3RoKHdoaWNoKHN1Ymx2bGRhdGEkTWF0Y2ggPT0gIk1hdGNoIiAmIHN1Ymx2bGRhdGEkYmluX2xlYXJuZWQgPT0gMSkpL2xlbmd0aCh3aGljaChzdWJsdmxkYXRhJE1hdGNoID09ICJNYXRjaCIpKSoxMDAsMiksICclIG9mIHBhcnRpY2lwYW50cyBpbXByb3ZlZCB3aGlsZSAnLCByb3VuZChsZW5ndGgod2hpY2goc3VibHZsZGF0YSRNYXRjaCA9PSAiTWlzbWF0Y2giICYgc3VibHZsZGF0YSRiaW5fbGVhcm5lZCA9PSAxKSkvbGVuZ3RoKHdoaWNoKHN1Ymx2bGRhdGEkTWF0Y2ggPT0gIk1pc21hdGNoIikpKjEwMCwyKSwnJSBvZiBwYXJ0aWNpcGFudHMgd2hvIGhlYXJkIG1pc21hdGNoaW5nIGNhdGVnb3JpZXMgaW1wcm92ZWQuJykpDQpgYGANCg0KYGBge3IgZG9lcyBhZGRpbmcgdGhpcyBpbmZvIGltcHJvdmUgdGhlIG1vZGVsP30NCg0Kc3VibHZsZGF0YSRDQ19NYXRjaCA8LSAoc3VibHZsZGF0YSRNYXRjaCA9PSAiTWF0Y2giKSAtIC41DQoNCmltcHJvdmVtb2RlbDIgPC0gZ2xtKGJpbl9sZWFybmVkIH4gZGlzdF9jZW50K0NDX3Jlc3BjaGFuZ2UrZGlzdF9jaG5nK0NDX01hdGNoLCBkYXRhID0gc3VibHZsZGF0YSkNCnN1bW1hcnkoaW1wcm92ZW1vZGVsMikNCmBgYA0KDQojIyMjIFRoZXNlIGRpZmZlcmVuY2VzIGJldHdlZW4gcGFydGljaXBhbnRzIHdlcmUgbm90IHN0YXRpc3RpY2FsbHkgc2lnbmlmaWNhbnQ7IGhlYXJpbmcgbWF0Y2hpbmcgb3IgbWlzbWF0Y2hpbmcgY2F0ZWdvcmllcyBkb2VzIG5vdCBwcmVkaWN0IHdoZXRoZXIgcGFydGljaXBhbnRzIGltcHJvdmVkIGluIHRoZSB0YXNrLiBUaGUgbWFqb3JpdHkgb2YgbGVhcm5pbmcgc3RpbGwgY2FtZSBmcm9tIGFjdGl2ZWx5IGxlYXJuaW5nIGxhYmVscyBmb3Igc291bmQgY2F0ZWdvcmllcy4NCg0KIyMjIyBUaG91Z2ggZmFtaWxpYXJpemluZyB3aXRoIHRoZSBzb3VuZCBjYXRlZ29yaWVzIG1heSBub3QgYmUgYSB2aWFibGUgc3RyYXRlZ3kgdG8gaW1wcm92ZSBsYW5ndWFnZSBsZWFybmluZywgdGhpcyBpcyBlbmNvdXJhZ2luZyB0byBrbm93IHRoYXQgaXQgbWF5IG5vdCBtYXR0ZXIgd2hhdCBsaXN0ZW5lcnMgaGVhciBiZWZvcmUgbGVhcm5pbmcuIExlYXJuZXJzIGNhbiBzdGlsbCBsZWFybiBhIGxhbmd1YWdlIGV2ZW4gaWYgdGhleSBoZWFyZCB0aGUgd3JvbmcgY2F0ZWdvcmllcyB0byBzdGFydC4gTGVhcm5lcnMgY2FuIHN0aWxsIGxlYXJuIGEgbGFuZ3VhZ2UgcmVnYXJkbGVzcyBvZiB3aGF0IGxhbmd1YWdlcyB0aGV5IGFscmVhZHkga25vdy4=