Computational modeling of speech recognition offers a promising tool to study human speech perception.

INTRO
Humans extract acoustic features from audio to identify phonemes to decode words. We can simulate this process with machine learning (neural networks).

Pytorch contains off-the-shelf neural networks trained to do tasks like speech recognition.

Backbone: neural network that contains the mapping from audio to phoneme.

Decoder: algorithm that decides the phonemes based on the audio.

Automatic Speech Recognition (ASR): neural networks trained to convert audio into text.

METHODS
(adapted from Hira, M., 2024)

Get Audio

Clean all files (remove noise, extra words)

Match sampling rate to PyTorch requirements

Load PyTorch

Load backbone & decoder

Run ASR

Calculate Word Error Rate

Word Error Rate (Levenshtein Distance): difference between two texts/strings.

RESULTS

Simulation of Accent Perception

Simulation of Accent Training

No Training	Single Accent	Multi-Accent
American Accented English | British Accented English | Indian Accented English

METHODS

- Greedy: Pick the most likely option at each decision
- Beam Search: Pick the most likely option over n words
- Substitutions

FUTURE DIRECTIONS
- Validate automatic speech recognition models as tools for human speech perception.
- Simulate learning/training studies via fine-tuning (i.e. fine-tune an English ASR model with Spanish to simulate Spanish language learning).

REFERENCES

DETAILS

Backbone: wav2vec2

Types of Decoders

1. Greedy: Pick the most likely option at each decision
2. Beam Search: Pick the most likely option over n words

Word Error Rate

Types of Changes:

1. Addition
2. Insertions
3. Substitutions

Response	Answer	Word Error Rate
LUCK | BLACK | 100%
RECIPT | RECEIPT | 0%
OUR | OUR | 100%

This measure is imperfect; this mistake would count as 2 errors instead of 1 (swap E and I)

Scoring homophones causes issues (1/3 errors and 1/4 errors)

Likelihood of Phoneme

Decoder

Types of Decoders (non-inclusive):

- Greedy
- Beam Search

Accuracy:

- 0.1
- 0.2
- 0.3
- 0.4
- 0.5
- 0.6
- 0.7
- 0.8
- 0.9
- 1.0

Speech in Noise

- No Foreign Accent
- Single Foreign Accent
- Multi-Accent

Simulation of Accent Perception

American Accented English	British Accented English	Indian Accented English

Simulation of Accent Training

No Training	Single Accent	Multi-Accent
American Accented English | British Accented English | Indian Accented English

Word Error Rate:

- 0
- 1
- 2
- 3
- 4

REFERENCES

